
Quantum double pendulum: Study of an autonomous classically chaotic quantum system

Luca Perotti
Center for Nonlinear and Complex Systems, Universitá degli Studi dell’Insubria, Como, Italy

(Received 21 July 2004; published 30 December 2004)

A numerical study of the quantum double pendulum is conducted. A suitable quantum scaling is found which
allows us to have as the only parameters the ratios of the lengths and masses of the two pendula and a
(quantum) gravity parameter containing Planck’s constant. Comparison with classical and semiclassical results
is used to understand the behavior of the energy curves of the levels, to define regimes in terms of the gravity
parameter, and to classify the(resonant) interactions among levels by connecting them to various classical
phase space structures(resonance islands).
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I. INTRODUCTION

In 1992, J. Ford suggested the double pendulum as a suit-
able system on which to experimentally test the ability of
quantum mechanics to describe classically chaotic systems
[1]: as a simple spatially bounded autonomous Hamiltonian
system presenting—in its classical version—transition to
chaos it appeared ideal to test the consequences of the lack of
chaos in “eigenfunctions, eigenvalues, and time evolution”
of such quantum systems. Since then, our understanding of
the signatures of classical chaos in quantum mechanics has
greatly improved[2]; in particular arguments have been ad-
vanced to the effect that continuous observation of the quan-
tum system would bring its behavior back to the classical
one [3]. Still the above mentioned characteristics of the
double pendulum make it a candidate for a thorough quan-
tum study: it is far simpler than other chaotic autonomous
systems that have been studied in recent years, like quantum
stadia[4], with their relevance to quantum dot technology, or
hydrogen in strong magnetic fields[5] and helium [6],
which, moreover, are not spatially bounded; the quantum
kicked rotor[7] and hydrogen in monochromatic microwave
fields[8] have been the focus of much study and have almost
become a paradigm of “quantum chaos,” but they are non-
autonomous.

The relative freedom with which mass and length ratios
can be changed in the double pendulum would moreover
allow us to study how the classical transition to chaos is
reflected in its quantum counterpart when varying these pa-
rameters and this may be illustrative of various “quenchings”
of chaos in systems like, for example, helium itself: the ab-
sence of observed chaos in helium appears to be a conse-
quence of the possibility of an adiabatic separation in hyper-
spherical coordinates[6] so that there are quite good
quantum numbers right up to the present precision of obser-
vations. Different mass ratios would probably break this qua-
sisymmetry; but changing the electron masses would just
result in making the system even more complicated and not
accessible to direct experimental testing.

On the other hand, even though the classical double pen-
dulum has often been used as an example of autonomous
chaotic system[9,10], doubts about the proper ordering of

the noncommuting operators in its kinetic energy[11] have
up to now made its quantum counterpart not palatable to
extensive analysis. The aim of this paper is to propose a
reasonable ordering giving the proper behaviors for zero
gravity (the behavior in the high gravity limit does not de-
pend on the ordering), and to explore the properties of the
eigenfunctions of the resulting Hamiltonian. The quantum
dynamics of the double pendulum is analyzed at all values of
gravity and not only in the high gravity limit where it re-
duces to the trivial case of two coupled harmonic oscillators.
My analysis shows that the three classical regimes encoun-
tered increasing gravity—classical regular motion, “global
chaos,” and “coupled oscillators”— are faithfully mirrored in
the quantum system.

The present paper is thus organized: Sec. II presents the
system, both classical and quantum; Sec. III introduces and
discusses the quantum numerical methods used. Finally, Sec.
IV discusses the quantum system properties; first those that
can be obtained by semiclassical methods, then those ob-
tained from the quantum simulations, focusing on the differ-
ent quantum behavior in the three classical regimes of low
gravity (classical regular motion in most of the phase space),
medium gravity(classical global chaos regime), and high
gravity (regular “coupled oscillators” regime).

II. MODEL: CLASSICAL AND QUANTUM
HAMILTONIANS

An ideal double pendulum is shown in Fig. 1;l1 andl2 are
the lengths of the two pendula andM1 andM2 their masses.
Introducing the ratiosl = l2/ l1 and m=M2/M1 and the mo-
mentaL1 (total angular momentum of the system) and L2
conjugated to the two anglesw1 andw2, the classical Hamil-
tonian reads[9]

H =
1

2M1l1
2F L1

2

1 + m sin2w2
−

2L1L2

l
S l + cosw2

1 + m sin2w2
D

+ L2
21 + m + 2ml cosw2 + ml2

ml2s1 + m sin2w2d G
+ M1gl1hs1 + mds1 − cosw1d + mlf1 − cossw1 + w2dgj.

s1d
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It is possible[9] to scale the system via the adoption of
new adimensional variables: timet= tÎE/ sM1l1

2d and mo-
mentali =Li /ÎEM1l1

2, whereE is the constant total energy.
The scaled Hamiltonianh=H /E then always equals 1 and
depends only on the gravity parameterg=gM1l1/E and the
ratios l andm:

h =
1

2
F l1

2

1 + m sin2w2
−

2l1l2

l
S l + cosw2

1 + m sin2w2
D

+ l2
21 + m + 2ml cosw2 + ml2

ml2s1 + m sin2w2d G + ghs1 + mds1 − cosw1d

+ mlf1 − cossw1 + w2dgj. s2d

Classical results are presented through Poincaré surfaces
of section(SOS); in the present paper I shall only consider
surfaces of section in thew2=0,ẇ2.0,hl1,w1j plane of
which several examples are given in Fig. 8 of Ref.[9].

For g=0 the total angular momentuml1 is conserved, it
is therefore one of the two actions of the system and the SOS
consists of horizontal lines; motion inw1 is always a rotation,
but —asw1 is not the angle associated to that action—ẇ1 is
not constant. The second actionI2 has instead to be
calculated numerically[9]. The uniformity of the SOS
also hides the two different kinds of motion inw2=0:
rotation for ul1u,Î2f1+ms1−ld2g, and libration for

Î2f1+ms1−ld2g, ul1u,Î2f1+ms1+ld2g.
For gÞ0 we shall here only note two facts. One is the

vertical asymmetry of the SOS which is due to the fact that
—following Poincaré prescription— only the orbits crossing
it with ẇ2.0 are shown; the SOS forẇ2,0 is perfectly
symmetric to it. The other is that forg. f2s1+m+mldg−1

rotation inw1 is no longer possible andw1 is limited between
±arccosh1−fgs1+m+mldg−1j.

In quantum mechanics we cannot use the classical scal-
ing; we instead multiply the Hamiltonian by 2M1l1

2/"2 so as
to have as sole parameters the scaled(adimensional) gravity
g̃=2M1

2l1
3g/"2 and again the two ratiosl andm; the adimen-

sional scaled energy will be indicated asẼ=2M1l1
2E/"2, the

time ast̃= t" /2M1l1
2, and the adimensional scaled momentum

operators asL̃
ˆ

i = L̂i /" where the quantum momentum opera-

tors are defined in the usual way:L̂i =−i"] /]wi. The symme-
trized quantum Hamiltonian then reads

H̃ =F L̃
ˆ

1
2

1 + m sin2w2
−

L̃
ˆ

1

l
S l + cosw2

1 + m sin2w2
L̃
ˆ

2 + L̃
ˆ

2
l + cosw2

1 + m sin2w2
D

+ L̃
ˆ

2
1 + m + 2ml cosw2 + ml2

ml2s1 + m sin2w2d
L̃
ˆ

2G
+ g̃hs1 + mds1 − cosw1d + mlf1 − cossw1 + w2dgj. s3d

Infinitely many other symmetrizations of the last two ki-
netic terms are possible[12]; our choice has been dictated by
the physical argument that for zero gravity the ground state is
completely delocalized[13]; its energy must therefore be
zero. As we shall see, the chosen symmetrization guarantees
that this be the case, even for the truncated basis sets we
have to use for our numerical simulations.

Classical and quantum adimensional scaled parameters
and variables are related thus:

g = g̃/Ẽ, s4d

li = L̃i
Î2/Ẽ, s5d

t = t̃Î2Ẽ. s6d

Equation(4) means that—for given values ofl and m—the
energy levels corresponding to the same classical situation,
as described by the SOS at a given classical gravity param-

eter ḡ, are to be found on thehg̃ ,Ẽj plane along the straight

line Ẽ= g̃ / ḡ.
The classical limit is obtained forg̃→` along such a line;

this means havingM1, l1→` while keeping all three the
classical parametersl ,m, and ḡ constant. The same result is
obtained with the usual “unphysical” limit"→0.

III. NUMERICAL METHODS

A. Projection of the double pendulum on a rotor basis

To numerically calculate the energy levels of the Hamil-
tonian (3) we project it on the basisFm1m2

given by the
tensor product of the bases for two free rotors:

Fm1m2
=

eim1w1eim2w2

2p
; s7d

and then we diagonalize the finite matrix obtained by trun-
cating the basis at suitable values of the indicesm1 and m2

[14]. The matrix elements km18m28uH̃um1m2l
=e0

2pe0
2pdw1dw2Fm18m28

* H̃Fm1m2
are

FIG. 1. An ideal double pendulum.
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km18m28uK̃um1m2l

= F 1
Î1 + m

Sm1sm1 − m2 − m28d + m2m28
1 + m + ml2

ml2
D

3S2 + m − 2Î1 + m

m
Dunu

dm2,m28+2n +
Î1 + m − 1

ml

3f2m2m28 − m1sm2 + m28dg

3S2 + m − 2Î1 + m

m
Dgsnd

dm2,m28+s2n+1dGdm1,m18
, s8d

gsnd = Hunu, n ù 0

unu − 1, n , 0,
J

km18m28uŨum1m2l = g̃Fs1 + mddm2,m28Sdm1,m18
−

1

2
sdm1,m18−1

+ dm1,m18+1dD + mlSdm2,m28
dm1,m18

−
1

2
sdm2,m28−1dm1,m18−1

+ dm2,m28+1dm1,m18+1dDG , s9d

where we have separated the kinetic energy termK̃ and the

potential energy oneŨ.
It can immediately be seen that the kinetic energy matrix

elements between the statem1=m2=0 and every basis state
(including itself) are zero, thus giving zero as an eigenvalue
of the system for zero gravity.

When running a simulation on a truncated basis, it is im-
portant to evaluate how many states are a good approxima-
tion to those of the full problem. Our simulations form= l
=1 use um1umax=25 (51 levels) and um2umax=18 (37 levels)
[15]; a test run atg̃=0 with a doubled basis set(81349 is

the best choice in this case) shows that 555 levelssẼmax

=145d are practically identical to those calculated on the
smaller basis, giving a total of about 30% of reliable states.
With increasingg̃ this number decreases, since the lack of
interaction with the missing states at high energies will pro-
gressively make also the topmost reliable states unreliable.
On the other hand, since the energy of all levels grows with

g̃ , Ẽmax grows at least as the slowest growing state, namely
the ground state which grows asÎg̃.

We have performed other two reliability tests on(ordering
independent) properties of the system:

(i) We confronted thel =m=1,g=0 level density with the
theoretical value obtained from the third graph in Fig. 3 fol-
lowing the procedure given in Sec. IV A. As shown in Fig. 2,
the agreement is very good for all the states we have found
above to be reliable.

(ii ) Again for m= l =1, the dependence of the ground state
energy fromg̃ approaches for high values ofg̃ the theoretical

one from Eq.(11): Ẽ0,0=Îg̃s2+Î2d<1.848Îg̃.

B. Husimi functions

For many years now, Husimi functions[16] have been
widely used when comparing quantum and classical systems,
as they allow us to project quantum functions in phase space
in a way that avoids the interpretation problems connected
with Wigner functions. In Hilbert space, the coherent states
to be used as coarse-graining functions are, for the cylindri-
cal phase space of each of the two spatial variablesi =1, 2,
and apart from unnecessary constant phase terms[17],

uCw̄i,L̄
˜

i
l =Î 1

2sip
3/2Smi

e−s1/2si
2dsmi − L̄

˜
id

2−iw̄imiumil.

Here the variables used are the adimensional quantum scaled

ones,w̄i andL̄
˜

i are the(quantum scaled) phase space coordi-
nates of the center of the packet, andsi—the angular mo-
mentum width parameter—is a free parameter; good results
are obtained whens.1. The normalization is chosen so that
the Husimi function of any single rotor eigenstaterH

smid

= ukmiuCw̄i,L̄
˜

i
lu2 is normalized to 1.

The Husimi function for a double pendulum eigenstate
uFl=Sm1,m2

Cm1,m2
um1,m2l will therefore be

FIG. 2. Comparison of theoretical(dash) and numerical(full
line) adimensional quantum scaled energy vs level number curves.

QUANTUM DOUBLE PENDULUM: STUDY OF AN … PHYSICAL REVIEW E 70, 066218(2004)

066218-3



rH = ukCw̄1,L̄
˜

1,w̄2,L̄
˜

2
uFl2 =

1

4s1s2p3uSm1,m2
Cm1,m2

e−s1/2s1
2dsm1 − L̄

˜
1d2−s1/2s2

2dsm2 − L̄
˜

2d2+isw̄1m1+w̄2m2du2. s10d

For comparison with the classical Poincaré surfaces of section, we shall here calculate only the Husimi function(10) on the
surfacesl1,w1d, wherew2=0 and

L̄
˜

2 =
S1 +

1

l
DL̄
˜

1 +ÎfẼ − g̃s1 + m + mlds1 − cosw̄1dgS1 + m + 2ml + ml2

ml2
D −

L̄
˜

1
2

ml2

1 + m + 2ml + ml2

ml2

,

so thatẇ2.0.

IV. RESULTS

Now that we have the necessary numerical tools, we can
use them to explore the quantum behavior in the three clas-
sical regimes which we encounter when increasing the clas-
sical gravity parameterg from 0 to ` [9]: regular motion in
most of the phase spacesg,0d, global chaos regime, and
regular coupled oscillators regime [g
@max(1/s2mld ,1 /f2s1+mdg)]. First though I shall make
some general considerations which will help orientate us in
the parameter space, and then pass to a detailed analysis of
my numerical results.

A. Level classification and densities

Energy levels at a giveng̃ can be classified in three
groups according to the character of the classical SOS they
correspond to. Starting from the bottom we first have
“coupled harmonic oscillators states”(high g), then “cha-
otic” states (medium g), and finally “free rotors” states
(low g).

For low g̃’s only few states belong to the first two classes;
for increasingg̃, their number grows, but it remains finite for
any finite value ofg̃; the number of free rotors states is
instead infinite for every value ofg̃.

For “coupled harmonic oscillators” states(in whose num-

ber is included the ground state), the energy levelsẼn1,n2
are

given by the expression

Ẽn1,n2
= Î2g̃Fa1Sn1 +

1

2
D + a2Sn2 +

1

2
DG s11d

and therefore grow as the square root ofg̃. In Eq. (11) the
frequency factors are[9]

a1,2=Îs1 + mds1 + ld ± Îs1 + md2s1 + ld2 − 4ls1 + md
2l

,

and the Maslov indices are both 1/2, as each of the two
oscillators has two caustics(in this case the inversion points
on the paths on which the actions are calculated) [16].

The number of levels under a given valueĒ
˜

of the energy
is therefore

N .
Ē
˜ 2/2

2g̃a1a2

=
Ē
˜ 2

2g̃
Î1 + m

l
, s12d

so that, on one hand, the density of levels is

dN

dẼ
.

Ẽ

g̃
Î1 + m

l
=

1

g
Î1 + m

l
s13d

and, on the other, the number of levels under a given valueḡ
of the classical gravity parameterg grows linearly withg̃:

N̄ .
g̃

4ḡ2a1a2

=
g̃

2ḡ2
Î1 + m

l
.

For free rotors statessg̃=0d, it is more difficult to exactly
evaluate the density of levels, as the second action cannot be
calculated analytically. On the other hand, some consider-
ations can be made: while in coupled harmonic oscillators
regime the energy is directly proportional to the scaled ac-
tions ni [see Eq.(11)], in free rotors regime the energy is
proportional to the actions squared[see Eq.(5)]. Since the
number of levels below a given energy is proportional to the
product of the actions, in the latter case it is only linear in
energy[as opposed to the quadratic dependence we have in
the former case: see Eq.(12)] and the density of states is
constant. This constant has to be evaluated numerically: to
do it we start by plotting the classical scaled actionI2 vs I1
=l1 thus obtaining the constant energy curve at the classical
scaled energyh (that by definition equals 1). We now note
that increasing the energy the graph expands radially. The

total number of states below a given energyĒ
˜

is therefore the
number of couples of quantized actions that can fit in the
areaAĒ

˜ swept by the constant energy curve in its growth

from Ẽ=0 to Ẽ=Ē
˜

or, equivalently, the area swept by a ra-

dius connecting the points of theẼ=Ē
˜

curve to the origin.
Care must be taken to calculate twice the areas swept both by
the outer curves(corresponding to libration in the second
anglew2) and by the inner ones(rotation inw2), as regions of
phase space corresponding to different classes of motion
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have different quantum numbers[18]. We now recall the
relationship Eq.(5) between classical and quantum scaled

actions that here readsni = I i
ÎẼ/2, wheren1=m1 andn2 are

the quantum numbers at energyẼ andI i , i =1, 2 are again the

classical scaled actions; the level densitydN/dẼ therefore
equals half of the area 2Ah as measured for the classical
scaled energyh=1. Examples are given in Fig. 3.

In quantum scaled variables, the energy of the lowest
states grows asÎg̃; the energy of the highest states instead
grows linearly with g̃; the net result is a decrease in the

density of states withg̃ at any given energyẼ. On the other
hand, when going to the classical limitsg̃→` ,g=constd, the

density of states remains constant both because of the con-
stant density atg̃=0 (for low g) and because of Eq.(13) (for
high g).

In terms of physical variables the energy density instead
grows going to the classical limit, due to the relationship
dN/dE=s2M1l1

2/"2dsdN/dEd, but this contribution is a uni-
form scale one: it does not alter the level structure.

B. Level interaction and relationship between Husimi functions
and classical SOS forl =m=1

1. Level structure and general considerations

Figure 4 shows the energy curves forẼ up to 60 andg̃ up
to 10. As expected from our discussion in the previous sec-
tion, we see that the lowest levels—which almost from the
start are in the coupled harmonic oscillators regime—grow
asÎg̃; most of the other levels instead grow at first linearly
with g̃. This is a consequence of the adiabatic theorem for
noninteracting levels: as the action is approximately con-
stant, the growth in energy of these levels goes as the aver-
age potential energykUl= g̃s1+m+mld=3g̃. Thus the levels
exhibiting such behavior must be(as confirmed by their Hu-
simi functions) those associated at first with the surviving
Kolmogorov-Arnold-Moser(KAM ) tori [19] and then with
the island chains with long recurrence times which are lo-
cated at the highest values oful1u and atul1u, ,0; in par-
ticular we shall see that the levels associated with the KAM
tori at the highest values oful1u are very resistant and pre-

FIG. 3. Energy surfaces in action variable representation. The
plots showI2 vs I1 at constant energyh=1. The radii indicate the
areas to be calculated to evaluate the density of states.

FIG. 4. Quantum scaled energy curves.
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serve the shape of their Husimi functions well into the global
chaos region, where—if we look at any classical SOS—we
see chaos almost everywhere. Only when the growth in en-
ergy of these levels slows down do the Husimi functions
change.

On the other hand, the levels associated with resonance
islands grow from the start more slowly than the others[20].
Extremely noticeable are the groups of levels associated with
the main resonance island just below the positive branch of

the separatrixsl1=Î2d; those starting atẼ=1.5, 5.5, 12.0,
21.5, 33.8, and 48.2 are clearly visible in Fig. 4. Theg̃=0
energy of the lowest level of each group can be obtained
only approximately from Eq.(5): due to the energy and an-

gular momentum discretization, we have thatl1 in Ẽ
=2sm1/l1d2 is not fixed, it varies—for scaled energies up to

Ẽ=140—between 0.81 and 1.21. We thus have for somem1
values two groups of levels, both associated with the main
resonance island: form1=2 these are atl1=1.205 02

sẼ=5.5d and 0.813 79sẼ=12.0d; for m1=3, at l1=0.915 44

sẼ=21.5d and 0.730 98sẼ=33.8d; and for m1=6, at l1

=0.916 53sẼ=85.7d and 0.814 78sẼ=108.4d; note that,
again from Eq.(5), the lowest levels within eachm1=const
series are those at highestl1.

In Fig. 4, the two straight lines atg=1/2ml =1/2 (lower
line) and atg=0.11, where the last invariant torus disappears
[9], (upper line) mark the region of classical global chaos.
This global chaos region appears darker than the rest of the

hg̃ ,Ẽj plane because it is there that them1, −m1 degenerate
levels significantly separate and the resulting high density of
distinct levels produces multilevel interactions of states cor-
responding to different classical resonances. These multilevel
interactions correspond to the overlap of classical resonances
and therefore are the quantum mechanical mark of global
chaos[21].

Two-level interactions can be classified into two types:
the first one is the splitting of degenerate or near-degenerate
levels increasingly repelling each other with growingg̃,
which can be locally described by the Demkov model[22]: a
two-level Hamiltonian with constant diagonal terms and off-
diagonal terms which depend on the perturbation(g̃ in the
present case). The second type of level interaction is instead
the avoided crossing, best described by the Landau-Zener
model [23]: again a two-level Hamiltonian, where now are
the diagonal terms which depend on the perturbation while
the off-diagonal terms are constant.

Demkov-like level interactions are localized either atg̃
=0 (interaction of near-degenerate resonance island levels)
or in the global chaos region(breaking of them1, −m1 de-
generacy). Landau-Zener-like interactions are instead evident
almost everywhere in Fig. 4. Still, the highest density of both
splittings and avoided crossings is in the global chaos tri-
angle, where the splitting of them1, −m1 degeneracy also
induces a high number of avoided crossings.

2. Husimi functions at zero gravity

At g̃=0, the levels are all degenerate in pairs(except the
m1=0 ones); the chosen basis set then decides how the prob-

ability is divided between the two states of each pair: looking
at the twow2=0, sl1,w1d planes(both ẇ2.0 and ẇ2,0),
the Husimi function of them1.0 level of a degenerate pair
has support on the upper half of the planesl1.0d while the
Husimi of them1,0 one has support on the lower half. The
size of the projection on each of the two planes instead de-
pends on the underlying classical phase space structure: if

um1u,ÎẼ we classically have rotation inw2; one of the lev-
els of the pair has therefore support either on theẇ2.0
plane or on theẇ2,0 one, with only a negligible tail on the
other plane that becomes larger for states whose support is
close to the sepatatrix; the other level vice versa. If instead

um1u.ÎẼ, classically we have libration inw2; both the de-
generate functions therefore have significant projections on
both the planes. Levels with the samem1 but with support
one onẇ2.0, the other onẇ2,0, arenot degenerate.

3. Husimi functions at low classical gravity parameter

For g, .0 the pairs of levels are still essentially degen-
erate, but the interaction, though small, begins to mix states
with different m1 quantum numbers; in particular there is
some flow of probability between states with oppositem1’s:
again looking at two(quasi)degenerate states, the tail of the
m1.0 Husimi now also has a component in the lower half of
the SOS; likewise, the tail of them1,0 Husimi has a com-
ponent in the upper half of the SOS. These tails —which for
levels 410 and 411 are atg̃=0.025sg=2.3310−4d already
larger than theg̃=0 ones by five orders of magnitude— re-
flect the appearance of classical libration motion inw1 when
g.0; but, since they are due to a probability flow which
happens via tunneling through the unbroken tori aroundl1
=0, they remain small till the global chaos triangle is reached
and those tori are broken.

For g small enough that classical chaos is not yet global,
and the resonance islands still cover most of the phase space
sg, ,0.1d, the widest avoided crossings undergone by the
main resonance states are with states having similarl1 but
with the sign changed; no probability flow is visible around
l1=0, again because of the unbroken KAM tori in that re-
gion; the flow takes instead place between theẇ2.0 Husimi
of one state and theẇ2,0 one of the other. Three examples
are given in Figs. 5–7, together with the classical Poincaré
section for the parameters of the crossing; since the functions
are symmetric forw1→−w1, only half of the SOS is shown;
the avoided crossings of the other states of each of the de-
generate doublets are identical to those shown.

The first example(Fig. 5) shows a very clean avoided
crossing undergone by the third state of the group of states
associated with the main classical resonance originating at

Ẽ.86; the parameters of the crossing place it out of Fig. 4,
but it has been chosen because—being at higher energy—
the Husimi functions are better localized in phase space and
flows at the crossing can be better recognized. Both levels
being in the central region of the SOS(rotation inw2 for g
=0) the flow is completely perpendicular to thehl1,w1j
plane: the two structures grow and fade but do not touch in
the plane.
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FIG. 5. (Color online) An avoided crossing of two levels, one of which is a principal resonance one. The points at which the Husimi
functions are calculated are marked as bigger dots on the quantum scaled energy curves shown on the right of the figure. The quantum
gravity parameter increases from top to bottom. For comparison, the classical Poincaré section forg=0.048 88 is superimposed on the
corresponding Husimi function.
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FIG. 6. (Color online) An avoided crossing of three levels, one of which is a principal resonance one. The points at which the Husimi
functions are calculated are marked as bigger dots on the quantum scaled energy curves shown on the right of the figure. The quantum
gravity parameter increases from top to bottom. For comparison, the classical Poincaré section forg=0.059 787 7 is superimposed on the
corresponding Husimi function.
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FIG. 7. (Color online) An avoided crossing of two levels, one of which is a principal resonance one. The points at which the Husimi
functions are calculated are marked as bigger dots on the quantum scaled energy curves shown on top of the figure. The quantum gravity
parameter increases from top to bottom. For comparison, the classical Poincaré section forg=0.048 88 is superimposed on the corresponding
Husimi function.
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The second example(Fig. 6) shows a similar avoided
crossing for the first state of the same grouping; here part of
the support of the second functionsbd before the crossing is
on the unstable fixed point of the principal resonance(it is
therefore at least in part a “scarred” state[24]); to the process
already seen in the previous example is thus added a visible
probability flow between the main resonance island and the
scarred portion of the second state.

Finally, the third example(Fig. 7) shows the avoided
crossing of three levels, one of them being the first state of
the group of states associated with the main classical reso-
nance originating atẼ.108.5. Of the other two states, one is
its symmetric inl1 (apparently a scarred state centered on
the unstable fixed point of the most noticeable resonance in
the lower part of the SOS), the other one(the intervening
state) is instead a mixture of a scarred state of the period two

FIG. 8. (Color online) Ex-
amples of Husimi functions in the
global chaos region.(a) n=33, g̃
=5.4, g=0.224 45. (b) n=36, g̃
=5.4, g=0.219 50. (c) n=127, g̃
=9.8, g=0.156 92. (d) n=118, g̃
=8.1, g=0.146 32. (e) n=117, g̃
=8.1, g=0.148 15. (f) n=74, g̃
=8.6, g=0.190 53.
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resonance above the principal one with an excited state of,
again, the most noticeable resonance in the lower part of the
SOS. Again, even though the support of a state can move to
l1.0 to l1,0 when passing the avoided crossing, all vis-
ible flow in the hl1,w1j plane is among structures with the
same sign ofl1.

From our study of the Husimi functions accessible to my
simulations in this regime, it appears that level interactions
which can be described by the Demkov model(level split-
ting) take place in thehl1,w1j plane, while interactions to be
described by the Landau-Zener one(avoided crossing) take
place perpendicular to it. The first part of the above state-
ment could be expected from what we have already seen—
namely that the Demkov transitions are those mixing states
with different values ofm1—the second part is instead a
consequence of the mixing of states with different values of
n2 by the Landau-Zener transitions.

4. Husimi functions in the global chaos region

As we have seen, the two processes responsible for the
high density of avoided crossings in the global chaos triangle
are the growth in energy of the low lying states and the
splitting of the ±m1 degeneracy. Both these processes are not
associated with the appearance of resonance islands in the
hl1,w1j SOS as these latter are connected with the interac-

tion of states with similarm1/ÎẼ ratios but differentum1u and
n2 values.

At such g values the phase space is mostly taken by the
chaotic sea and little remains of the classical resonant struc-
tures visible at lowerg values but many quantum states still
have Husimi functions peaked on their stable and unstable
fixed points. On the other hand, due to the multiple level
interactions we have already mentioned, only rarely the Hu-
simi functions of states in this regime are peaked on single
structures: even away from avoided crossings the support of
most states covers several classical structures, resulting in
rather complicated multipeaked Husimi functions. A few ex-
amples are shown in Figs. 8(a)–8(d). Figures 8(e) and 8(f)
instead show another typical shape for Husimi functions in
this regime: the probability is concentrated along the border
of the accessible classical region. Here—with the exception
of the main resonance island which disappears atg̃<2.0—
are the last island chains to be eaten up by the chaotic sea(at
g̃<1.2) and the first ones to appear(at g̃<2.5) when with
increasingg̃ the phase space reverts to regular.

5. Husimi functions at high classical gravity parameter:
Coupled oscillators regime

For arbitrarily small quantum gravity parameter the
ground state is in the global chaos region and its Husimi
function extends on the whole SOS; when gravity is in-

creased it soon leaves the global chaos region(at g̃
=0.075,g is already bigger than 1/3) and at first concen-
trates on the fixed point just below the center of theg=1
SOS in Fig. 8 of Ref.[9]; but when —atg̃<8— it enters the
coupled oscillators regimesg, .2d where the SOS consists
of concentric curves, it splits in two peaks located atl1=0
and w1 close to the extreme values ±arccosf1−s3gd−1g (in-
version points of the classical orbit). This reflects what can
be observed in Fig. 8 of Ref.[9]: when with increasingg the
system leaves the global chaos region, the first regular struc-
tures to appear are at the rim of the SOS. Forg, .2 both
the extreme values ofw1 and the positions inw1 of the peaks
decrease as 1/Îg (or, equivalently,g̃−1/4) while the relative
width of the peaks reduces.

A similar behavior, but at much higher gravity(already
the first excited state leaves the global chaos region atg̃
=0.625 and enters the coupled oscillators regime atg̃=27)
and, moreover, complicated by avoided crossings which
cause deviations from this pattern at someg̃ values, is ob-
served for the other states with low quantum numbers.

V. CONCLUSIONS AND PROSPECTIVES

I have conducted an extensive study of the dynamics of
the quantum double pendulum: even if not exhaustive it has
allowed us to observe a close correspondence between clas-
sical and quantum structures in phase space in all three clas-
sical regimes: from the free rotors one at low classical grav-
ity parameterg to the coupled harmonic oscillators regime at
high g, all through the global chaos regime for intermediate
values ofg. In particular, notwithstanding the persistence of
some regular Husimi functions in the global chaos regime,
the Husimi functions of most of the states in that region are
quite complicated, suggesting that the time evolution of
quantum packets might simulate rather well the chaotic clas-
sical evolution, spreading rapidly over most of the phase
space and remaining for fairly long times in such a state
before eventually collapsing again in a localized packet, as
expected from the well known analysis of Ref.[1]. The study
of the time evolution of suitably placed minimum uncer-
tainty packets will be the subject of a forthcoming paper.

Projections of the Husimi functions on other phase space
sections —sl1,w1d planes forw2Þ0 andsl2,w2d planes for
different values ofw1— and investigation of other combina-
tions of the length and mass parametersl andm might give
some interesting insight too, especially when compared to
the case studied here.
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